Use of Cell Viability Assay Data Improves the Prediction Accuracy of Conventional Quantitative Structure–Activity Relationship Models of Animal Carcinogenicity
نویسندگان
چکیده
BACKGROUND To develop efficient approaches for rapid evaluation of chemical toxicity and human health risk of environmental compounds, the National Toxicology Program (NTP) in collaboration with the National Center for Chemical Genomics has initiated a project on high-throughput screening (HTS) of environmental chemicals. The first HTS results for a set of 1,408 compounds tested for their effects on cell viability in six different cell lines have recently become available via PubChem. OBJECTIVES We have explored these data in terms of their utility for predicting adverse health effects of the environmental agents. METHODS AND RESULTS Initially, the classification k nearest neighbor (kNN) quantitative structure-activity relationship (QSAR) modeling method was applied to the HTS data only, for a curated data set of 384 compounds. The resulting models had prediction accuracies for training, test (containing 275 compounds together), and external validation (109 compounds) sets as high as 89%, 71%, and 74%, respectively. We then asked if HTS results could be of value in predicting rodent carcinogenicity. We identified 383 compounds for which data were available from both the Berkeley Carcinogenic Potency Database and NTP-HTS studies. We found that compounds classified by HTS as "actives" in at least one cell line were likely to be rodent carcinogens (sensitivity 77%); however, HTS "inactives" were far less informative (specificity 46%). Using chemical descriptors only, kNN QSAR modeling resulted in 62.3% prediction accuracy for rodent carcinogenicity applied to this data set. Importantly, the prediction accuracy of the model was significantly improved (72.7%) when chemical descriptors were augmented by HTS data, which were regarded as biological descriptors. CONCLUSIONS Our studies suggest that combining NTP-HTS profiles with conventional chemical descriptors could considerably improve the predictive power of computational approaches in toxicology.
منابع مشابه
Use of in Vitro HTS-Derived Concentration–Response Data as Biological Descriptors Improves the Accuracy of QSAR Models of in Vivo Toxicity
BACKGROUND Quantitative high-throughput screening (qHTS) assays are increasingly being used to inform chemical hazard identification. Hundreds of chemicals have been tested in dozens of cell lines across extensive concentration ranges by the National Toxicology Program in collaboration with the National Institutes of Health Chemical Genomics Center. OBJECTIVES Our goal was to test a hypothesi...
متن کاملQuantitative structure activity relationship study of inhibitory activities of 5-lipoxygenase and design new compounds by different chemometrics methods
A quantitative structure-activity relationship (QSAR) study was conducted for the prediction of inhibitory activity of 1-phenyl[2H]-tetrahydro-triazine-3-one analogues as inhibitors of 5-Lipoxygenase. The inhibitory activities of the 1-phenyl[2H]-tetrahydro-triazine-3-one analogues modeled as a function of molecular structures using chemometrics methods such as multiple linear regression (MLR) ...
متن کاملIn-silico prediction of Cellular Responses to Polymeric Biomaterials from Their Molecular Descriptors
In this work quantitative structure activity relationship (QSAR) methodology was applied for modeling and prediction of cellular response to polymers that have been designed for tissue engineering. After calculation and screening of molecular descriptors, linear and nonlinear models were developed by using multiple linear regressions (MLR) and artificial neural network (ANN) methods. The root m...
متن کاملQuantitative Structure - Activity Relationships Study of Carbonic Anhydrase Inhibitors Using Logistic Regression Model
Binary Logistic Regression (BLR) has been developed as non-linear models to establish quantitative structure- activity relationships (QSAR) between structural descriptors and biochemical activity of carbonic anhydrase inhibitors. Using a training set consisted of 21 compounds with known ki values, the model was trained and tested to solve two-class problems as active or inactive on the basi...
متن کاملQuantitative Structure Activity Relationship Analysis of Coumarins as Free Radical Scavengers by Genetic Function Algorithm
The antioxidant properties of coumarin derivatives using the 2,2ˈ -diphenyl-1- picrylhydrazyl (DPPH) radical scavenging assay were investigated by the application of Quantitative Structure Activity Relationship (QSAR) studies. The molecular structures were optimized and submitted for the generation of quantum chemical and molecular descriptors. Genetic Function Algorithm (GFA) was employed in m...
متن کامل